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Abstract. A brief summary is given of some important aspects of observations and mod-
elling of early-type galaxies. Photometric and long-slit spectroscopic observations, as well as
two- and three-integral modelling of the early-type galaxy IC3370 are given as an example.

1. INTRODUCTION

Early-type galaxies (elliptical and lenticular galaxies) belong to the left-hand end of
the Hubble’s tuning-fork diagram. Shape of elliptical galaxies varies in form from
round to elongated. One can use the simple formula n = 10[1 − (b/a)], where (b/a)
denotes the apparent axial ratio, to write the type of these galaxies: En. Therefore, E0
are round galaxies, and E6 are highly elongated systems. Research over last 20 years
brought new knowledge about ellipticals and we now know that these galaxies are
much more complex systems that they seemed. The elliptical galaxies contain little
or no gas or dust. The old stars that are prevalent are cold, and therefore belong
to the last spectral types. In the middle of the Hubble’s diagram there is a class of
galaxies designated as type S0, known as lenticular galaxies. They have a smooth
central brightness condensation similar to an elliptical galaxy that is surrounded by
a large region of less steeply declining brighteness. They have disks that do not show
any conspicuous structure. Because of their appearance, and also because of their
stellar content (e.g., spectral type), they look more like ellipticals rather than spiral
galaxies. In this paper I will present observations and modelling of the galaxy IC3370
classified as E2-E3 (RC3, de Vaucouleurs et al., 1991).

2. OBSERVATIONS

IC3370 is a bright galaxy, classified as E2-E3 elliptical galaxy, absolute blue magnitude
-21.4, heliocentric radial velocity 2930±24 km/s (see Fig. 1). It covers 2.9×2.3 arcmin
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Fig. 1: Galaxy IC3370: image taken from NED (left) and contour plot (right)

on the sky (RC3). However, it is a rather unusual elliptical galaxy and according to
Jarvis (1987, hereafter referred to as J87) it should be classified as S0pec (see below).

2. 1. PHOTOMETRIC OBSERVATIONS

I have used frames kindly provided by O. Hainaut using ESO NTT and EMMI in the
RILD mode on July 3-4, 2002. The photometry of IC3370 is very interesting and it is
given in detail in J87. I present here some additional elements that are complementary
to that study and are of importance for the analysis that I am undertaking (more
details will be available in Samurović and Danziger (2003)).

One should note that J87 took for the major axis the position angle (PA) of 40◦,
Carollo, Danziger and Buson (1993) took for the same axis PA of 51◦, while the
spectra in this study were taken using PA = 60◦. The reason for these differences lies
in a very particular photometry of this galaxy that has strong isophotal twisting as
shown in J87 and in Fig. 2 (see position angle (P.A.) plot). This is the evidence of the
fact that this galaxy is triaxial, because the isophotes of an axisymmetric system must
always be aligned with one another (Binney and Merrifield, 1998, hereafter BM98).
Fasano and Bonoli (1989) using sample of 43 isolated elliptical found that the twisting
observed in these galaxies is intrinsic (triaxiality). Jarvis has taken the mean position
angle of isophotes to be equal to 40±2◦ which is true for the data up to 80′′. However,
at larger radii the PA tends to increase, so the usage of larger value of 60◦ (and 150◦

for the minor axis) is justified (see Fig. 2).
In Fig. 2 I present relevant photometrical data obtained using IRAF task ellipse:

ellipticity, magnitude in B band for major axis (filled circles) and minor axis (open
circles), a4 parameter (fourth harmonic deviations from ellipse) and the position an-
gles, as a function of distance. The value of a4 is positive up to one effective radius1

(for almost all values of radius), thus indicating that the isophotes are disky, while
beyond one effective radius, isophotes become boxy since a4 is negative. Since a4

increases rapidly up to ∼ 5′′ this can lead to the conclusion of the embedded disk.
1Effective radius is the radius of the isophote containing half the total luminosity.
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Fig. 2: Photometric profiles for IC3370. From top to bottom (left): ellipticity, surface
brightness for the B filter (for major axis: full circles; for minor axis: open circles),
(right): a4 parameter and position angle.

The existence of the stellar disk was shown in J87. These photometric data will be
necessary for the dynamical modelling that will be given below.

2. 2. LONG-SLIT SPECTRA

Long-slit spectra observations kindly provided by J. Danziger were taken during
1998 March 1-3, using ESO NTT and EMMI in the Red Medium Spectroscopy mode.
The central wavelength was chosen to be near the Mg2 feature: ∼ 5150 Å. The
range that was covered was ∼ 700 Å. Several exposures were taken for different
position angles: for the galactic major axis (P.A. = 60◦) total exposure of 21,600
s, for the minor axis (P.A. = 150◦) total exposure of 7,200 s. The spectra were
rebinned at the telescope over 2 pixels giving a scale of 0.56 arcsec pixel −1. I did
standard data reduction procedures in ESO MIDAS: bias subtraction, division with
the normalized dome flat field, filtering of the cosmic rays. Wavelength calibration
was done using Helium-Argon comparison lamp spectra. Sky subtraction was done
by taking average of 30 rows near the edges of the exposure frames. In the end the
spectra were rebinned in the logarithmic scale. Also, spectra of several template stars
were reduced as described above, continuum divided, and averaged over several rows
in order to obtain one stellar template spectrum of high signal-to-noise ratio (S/N).
In Fig. 3 I present a central galactic spectrum and a template star spectrum (K0 III
star HR2701).
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Fig. 3: Reduced central spectrum of the galaxy IC3370 (above) and template star
(below). Spectra have been wavelength calibrated: x axis is in Angstroms. Note
effects of velocity dispersion and redshift in the case of the galaxy; y axis is in arbitrary
units.

3. STELLAR KINEMATICS: THEORETICAL APPROACH

In the case of IC3370, as in the case of all external galaxies, one cannot obtain
data necessary for the reconstruction of the distribution function directly: one can
observe line-of-sight velocities and angular coordinates. Since individual stars cannot
be resolved, one has to deal with integrated stellar light that represents the average
of the stellar properties of numerous unresolved stars that lie along each line of sight
(LOS). Each star will have a slightly different LOS velocity, and therefore its spectral
features will be shifted by a different amount: ∆u = c∆λ/λ = vLOS. The final galaxy
spectrum will be shifted and broadened, as shown in Fig. 3. First step in analysis of
the shifts and broadenings is to define the line of sight velocity distribution (LOSVD,
also called velocity profile, VP): this is a function F (vLOS) that defines the fraction
of the stars that contribute to the spectrum that have LOS velocities between vLOS

and vLOS + dvLOS and is given as F (vLOS)dvLOS. Now, if one assumes that all stars
have identical spectra S(u) (where u is the spectral velocity in the galaxy’s spectrum),
then the intensity that is received from a star with LOS velocity vLOS is S(u− vLOS).
When one sums over all stars one gets:

G(u) ∝
∫

dvLOSF (vLOS)S(u− vLOS). (1)

This relation represents the starting point for a study of stellar kinematics in
external galaxies (cf. BM98). The observer gets G(u) for a LOS through a galaxy
by obtaining its spectrum. If the galaxy is made of certain type of stars, one can
estimate S(u) using a spectrum of a star from the Milky Way galaxy (see Fig. 3,
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lower part).
The solution of Eq. (1) seems rather simple. It would be enough to take its Fourier

transform:

F̃ (k) ∝ G̃(k)
S̃(k)

(2)

where quantities with tilde sign are the Fourier transforms of the original functions.
This is however very difficult task, since G̃(k)

S̃(k)
will be plagued by large errors that vary

from point to point and the simple derivation of F (vLOS) will not be easy (for details,
see BM98). Therefore, less direct methods have been invented to solve this problem.

First we can define the simplest properties of a LOSVD. Its mean value is given
as:

v̄LOS =
∫

dvLOSvLOSF (vLOS). (3)

Its dispersion is given as:

σ2
LOS =

∫
dvLOS(vLOS − v̄LOS)2F (vLOS). (4)

One possible solution is to assume that LOSVD has the Gaussian form. Sargent
et al. (1977) invented the method known as Fourier Quotient Method, that has a
problem of large errors for the ratio G̃(k)

S̃(k)
that vary from point to point. Cross-

correlation method based on the calculation of the cross-correlation function between
the galaxy and the stellar spectra was pioneered by Simkin (1974) and developed
further by Tonry and Davis (1979).

LOSVD can be modeled as truncated Gauss-Hermite (FTGH) series that consists
of Gaussian that is multiplied by a polinomial (van der Marel and Franx, 1993):

FTGH(vLOS) = Γ
α(w)

σ
exp(−1

2
w2)

[
1 +

n∑

k=3

hkHk(w)

]
(5)

here Γ represents the line strength, w ≡ (vLOS− v̄)/σ, α ≡ 1√
2π

exp(−w2/2), where v̄

and σ are free parameters. hk are constant coefficients and Hk(w) is a Gauss-Hermite
function, that is a polynomial of order k. I will truncate the series at k = 4 (although
higher values are also possible), for which the polynomials are:

H3(w) =
1√
6
(2
√

2w3 − 3
√

2w), (6)

H4(w) =
1√
24

(4w4 − 12w2 + 3). (7)

Now LOSVD can be calculated by varying the values of v̄, σ, h3 and h4 until the
convolution of the function FTGH(vLOS) with a template star spectrum best repro-
duces the observed galaxy spectrum. The optimal fit is then reached using a non-linear
least-square fitting algorithm. If the form of the LOSVD is close to the Gaussian form,
then v̄ and σ will be approximately equal to vLOS and σLOS. Parameters h3 and h4

are important because they measure asymmetric and symmetric departures from the
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Gaussian. If one detects positive (negative) value of the h3 parameter that would
mean that the distribution is skewed towards higher (lower) velocities with respect to
the systemic velocity. On the other hand, if one detects h4 > 0 this means that the
distribution is more peaked than the Gaussian at small velocities with more extended
high-velocity tails; for h4 < 0 the distribution is more flat-topped than the Gaussian.
In the study of the dark matter in the early type galaxies the value of h4 parameter
plays a crucial role because it is constraining the level of tangential anisotropy which
is extremely important since it is well known that the excess of tangential motions
can mimic the existence of the dark matter haloes in these galaxies (Danziger 1997).
The influence of changes in their values on the form of the LOSVD is given in Fig. 4.

4. STELLAR KINEMATICS: OBSERVATIONAL RESULTS

Internal part of the galaxy IC3370 can be considered ’disky’ as it was shown
before. Its rotation curve of the major axis is steeply rising to ∼ 120 km s−1 within
20 arcsec and remains constant out to ∼ 120 arcsec (> 3 effective radii). As it is usual
in the case when a galaxy has a substantial rotational velocity, LOSVD is skewed,
namely h3 has the opposite sign to vlos. The values of h4 parameter are consistent
with zero value out to the ∼ 3 Re thus indicating the lack of tangential anisotropies.
Small deviations from the zero value are visible in the case of the minor axis. In
Fig. 5 I present the extracted kinematical parameters of IC3370 for major (PA= 60◦)
and minor (PA= 150◦) axes. Note that this galaxy shows signs of minor-axis stellar
rotation: within |r|<∼10′′ velocity rapidly increases up to ∼ 60 km s−1. In Fig. 6 the
reconstruction of LOSVD for IC3370 is given.

5. MODELLING

5. 1. TWO-INTEGRAL MODELLING

For the two-integral modelling procedures I used the modelling technique developed
by Binney, Davies and Illingworth (1990, hereafter BDI), and subsequently used by
van der Marel, Binney and Davies (1990), van der Marel (1990), and Cinzano and van
der Marel (1994) (hereafter CvdM). Of all these papers only in CvdM the modelling
includes also h3 and h4 parameters. Statler et al. (1999) used the modified version
of this method to analyze mass distribution in NGC 1700. Here I briefly present the
assumptions and the modelling steps.

Two-integral modelling is the first step in understanding of the dynamics of the
elliptical galaxies, because in cases of small departures from triaxiality (which is far
more probable, and true in case of IC3370 as it has been shown above), comparison of
real systems with the models can provide useful insights. The assumptions of axisym-
metry and the fact that the velocity dispersion tensor is everywhere isotropic are the
starting points for the procedure that includes the following three steps (cf. BDI):
(i) inversion of the luminosity profiles and obtaining three-dimensional luminosity
density that provides the mass density (under assumption of constant mass-to-light
ratio); (ii) evaluation of the potential and derivation of the velocity dispersion and
azimuthal streaming (under assumptions that the form of the distribution function
is f(E,Lz), where E is the energy and Lz is the angular momentum of the individ-
ual star about the symmetry axis of the galaxy and that the velocity dispersion is
isotropic) and (iii) comparison of the projected kinematical quantities from the model
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Fig. 4: Plots demonstrating various combinations of h3 and h4. Pure Gaussian is
in the center (both h3 and h4 are equal to zero). h3 parametrizes the skewness of
the line profile, while h4 measures whether the profile is more or less peaked than a
Gaussian.
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Fig. 5: Large scale kinematics for IC3370 for two different position angles. Left:
major axis (PA = 60◦) Right: minor axis (PA = 150◦). From top to bottom: the
mean line-of-sight velocity (in km/s), dispersion (in km/s), h3 and h4 parameters as
a function of distance along different axes. The dotted lines indicate effective radius,
Re ≈ 31′′ in both cases.
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Fig. 6: LOSVD of IC3370 using data from Fig. 5. For a point at 115.06′′ the Gaussian
is plotted as a dot-dashed line.
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with the observed kinematic parameters; optionally, a disk, and/or a dark halo can
be included in the modelling procedure.

The details of the modelling procedure are given in CvdM, and here I only briefly
present some choices that I made and give the flowchart in Fig. 7. I assumed that
the galaxy consists of a buldge and a disk; the dark matter halo is also included in
the modelling procedure (see below). For the inclination I took i = 50◦, because
this value provided the best results in the modelling procedure. This value is in
agreement with the value implied by the observed axial ratio of the isophotes, qa:
i ≥ arccos qa

>
∼46◦. I deprojected the photometry data using Lucy’s algorithm to get

the three-dimensional luminosity density. Then I obtained the mass density ρ using
assumption of a constant mass-to-light ratio. The next step uses a three dimensional
axisymmetric luminosity density, in order to evaluate the potential using a multipole
expansion, and to solve the Jeans equations to find σ2 and v2

φ for every point in the
meridional plane. Since I assume that the distribution function is of the form f(E, Lz)
the second radial velocity moment, v2

R ≡ σ2
R, and the second vertical velocity moment,

v2
z ≡ σ2

z are everywhere equal and vRvz = 0. The Jeans equations are:

∂ρv2
z

∂z
+ ρ

∂Φ
∂z

= 0 (8)

∂ρv2
R

∂R
+ ρ

∂Φ
∂R

+
ρ

R
[v2

R − v2
φ] = 0. (9)

I solve them searching for unknowns v2
φ and σ2

R = σ2
z . Using a free parameter,

k, one can, as usual, assign a part of the second azimuthal velocity moment v2
φ to

streaming:

vφ = k
√

v2
φ − σ2

R.

Then I project the dynamical quantities on to the sky to get predictions.
My results of dynamical modelling are given in Fig. 8. It is obvious that this

kind of modelling can provide rather good fit for the velocity in case one takes k = 1
(velocity dispersion is isotropic), adds disk potential and assumes that there is no
dark matter. When one adds the potential of the dark matter (given as an isochrone
Henon potential, as in Carollo and Danziger 1994) the fit for the major axis still
remains good. The fit for k = 0.6 can be ruled out, while the fit for which disk
potential is added and when there is no dark matter potential is good in the outer
parts while in the inner parts it gives the velocity that is too large. The fits for
dispersion, h3 and h4 are similar in four aforementioned cases. The dispersion along
the major axis in the case in which one assumes the existence of the dark halo can be
modeled using this approach, however a better fit is obtained without this assumption,
since the dispersion continues to decrease. In the case of the minor axis, note that
for the velocity all k = 1 models provide rather accurate values (again, k = 0.6
model can be ruled out). All four assumptions fail to produce observed dispersion
values along the minor axis: observed values are always greater than the ones derived
from the two-integral modelling. This two-integral model for given mass-to-light ratio
underestimates minor axis dispersions. Model will be flattened by enhanced v2

φ which
does not contribute to minor axis profile. Real galaxies are flattened by enhanced σ2

R
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which contributes on the minor axis. The radius of the disk that I have used to get
a successful fit was 6 arcsec (0.9 kpc for h = 0.71).

The conclusion that can be drawn is that one can model IC3370 using two-integral
modelling, but this approach is not completely satisfying because the observed dis-
persion on the minor axis deviates from the modeled one. Also, strictly speaking, this
approach is not completely valid, since this galaxy is triaxial. The small values of h4

parameter suggest that there are no big anisotropies in the outer part of the galaxy.
Judging from the results of this kind of modelling one cannot say firmly whether

IC3370 is embedded in the dark halo, and one is faced with a situation similar to the
one of NGC2663 from Carollo et al. (1995) paper. The inclusion of the dark matter
in the modelling is not required, but as suggested in the analysis of S0 galaxy NGC
5866 for which the existence of the dark matter is not needed (Gerssen, 2000), the
complete absence of dark halo is not likely. Another example found in the literature
is the one of NGC 4472 (E2/S0 galaxy) for which the dispersion can be fitted both
with and without the dark matter halo (Saglia et al., 1993).

5. 2. THREE-INTEGRAL MODELLING

For axisymmetric potentials one can have orbits that have three integrals of motion:
E, Lz and I3. There is no general expression for the third integral, I3. The as-
sumption that the distribution has the form f = f(E, Lz, I3) broadens the range of
possible axisymmetric motions. Three-integral models are used for modelling triaxial
systems. Schwarzschild (1979) invented a very powerful method that can be used for
construction of axisymmetric and triaxial models of galaxies in equilibrium without
explicit knowledge of the integrals of motion. The basic steps of this approach are
the following: one specifies the mass model ρ(r) and finds its potential and then con-
structs a grid of cells in a position space. Then initial conditions are chosen for a set
of orbits and for every orbit one integrates the equations of motion for many orbital
periods and measures how much time the orbit spends in each cell (that measures
how much mass the orbit contributes to that cell). Finally, one needs to determine
the non-negative weights for each orbit such that the summed mass in each cell is
equal to the mass given by the original ρ(r). For the last step one can use different
methods; for example, Schwarzschild (1979) used linear programming. Non-negative
least square (NNLS) method (Lawson and Hanson, 1974) was used in this work.

Schwarzschild original idea has recently been further developed: namely, mod-
els are now made that match the bulk kinematics and LOSVD of observed galaxies.
Rix et al. (1997) used such approach to search for dark matter in elliptical galaxies.
Cretton and van der Bosch (1999) used it to confirm the presence of nuclear black
holes. Recently, Gebhardt et al. (2003) used orbit superposition method for detec-
tion of central black holes in 12 galaxies. These works deal with the axisymmetric
modelling only. I have used Rix et al. (1997) algorithm to build a new Schwarzschild
modelling code that uses the so-called self-organizing maps (SOMs) (Kohonen, 1997;
Murtagh, 1995) to extract velocity profiles from the large orbits library. The flowchart
is presented in Fig. 9.

The details of the modelling procedure are given in Rix et al. (1997). I give here
only several important equations. Namely, one searches for non-negative superposi-
tion of orbital weights, γk, that best matches the observational constraints within the
error bars:
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2I MODELING RESULTS
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Fig. 8: Results of two-integral dynamical modelling of IC3370. Left: major axis
modelling. Right: minor axis modelling. Solid lines represent cases with k = 1 with
disk included and without dark matter. Dotted lines belong to k = 0.6 case, without
the disk included and without the dark matter. Dot-dashed lines are for the case with
k = 1 with the disk and dark matter included, and the dashed lines are for the case
with k = 1 and no disk and no dark matter included (see text for details)
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χ2 ≡
Np∑

l=1

(
Mobs

l −∑
γkMk

l

∆Mobs
l

)2

+
Nc∑

l=Np+1

4∑
m=1

(
Mobs

l hobs
m,l −

∑
γkMk

l hk
m,l

∆(Mobs
l hobs

m,l)

)2

, (10)

Here, Np are photometric constraints and Nk = Nc−Np are kinematic constraints (Nc

is the number of constraint positions). Least squares problem that has to be solved
for the occupation vector (γ1, . . . , γN0), with the constraints γk ≥ 0, for k = 1, . . . , N0

for m = 1, 2, 3, 4 is the following:



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1

M1
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2
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M1

Np
. . . . . . MN0

Np
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Np+1h

1
1,Np+1 . . . . . . MN0

Np+1h
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...
...

M1
Nc

h1
1,Nc

. . . . . . MN0
Nc

hN0
1,Nc

...
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...
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1
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
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


γ1
...
...

γNo


 =



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1

Mobs
2
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Mobs
Np

Mobs
Np+1h
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1,Np+1

...
Mobs

Nc
hobs

1,Nc

...

...
Mobs

Np+1h
obs
M,Np+1

...
Mobs

Nc
hobs

M,Nc




(11)
Here, M denotes mass fractions, ”obs” is related to the observed quantities. The

total number of orbits is N0.
I used this code for testing several astrophysically important potentials in a library

of 729 orbits. Some very preliminary results are obtained for the logarithmic potential
(Binney and Tremaine, 1987) that describes the flat rotation curves of galaxies. The
model fits both velocity and velocity dispersion, because of the choice to fit them
perfectly. For an axisymmetric potential that has the form

Φ(R, z) =
1
2
v2
0 ln(R2

c + R2 + z2/q2) (12)

(Rc is the core radius, q describes the flattening of the potential and is taken to be
q = 0.7 in this case) tube orbits cannot reproduce h3 and h4 parameters. For the
triaxial potential:

Φ(x, y, z) =
1
2
v2
0 ln(R2

c + x2 + y2/p2 + z2/q2) (13)

(here p and q are intrinsic axial ratios; they again describe flattening of the potential,
and were taken to be p = 0.8 and q = 0.7 in this case) again h4 cannot be fitted
correctly. Fitting of h3 with tube orbits can give some agreement, while fit for h3 with
box orbits is not satisfying. The conclusion is that widely used logarithmic potential
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does not fit this galaxy, under aforementioned assumptions, although further checks
are necessary (for example, using more orbits and using the regularization procedure).
The results will be given in Samurović and Danziger (2003).

One possible way how the problem of triaxial modelling should be attacked would
be to find the behavior of p and q parameters along the galaxy using observational
constraints and to calculate potential for every point using these values (Eq. 13).
This work is currently in progress.
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